报告摘要:The security of most public-key cryptography systems is based on the belief that prime factorization of a large integer n cannot be done in polynomial time of log n. This belief, however, has no theoretical or scientific evidence. An increasing number of number theorists, including the speaker, believe that the opposite is actually true. To look for evidence of a possible efficient factorization algorithm, one considers a seemingly simpler question: are there efficient algorithms for the Liouville function λ(n) and/or the Möbius function μ(n)? One hopes that efficient methods to compute λ(n) and μ(n) might be based on their additive properties. The goal of this talk is thus to find additive relations among values of λ(n) and μ(n).
报告人简介:叶扬波,美国爱荷华大学教授。1981年毕业于清华大学,1981-1986年进入美国哥伦比亚大学深造获博士学位,1986-1990年,先后在普林斯顿高等研究院、约翰霍普金斯大学、康乃尔大学工作。研究方向为数论和医学成像。
报告时间: 2024年05月15日15:00-16:00
报告地点: 北衡楼1317
主办单位: 数学与统计学院
澳国立联合理学院
潘承洞数学研究所