当前位置: 首页 >> 科学研究 >> 学术预告 >> 正文

科学研究
2017.06.27:Perfect Matchings in Matching-Covered Graphs
2017/06/23 10:43:49 吴静    ( 点击:)

报告主题

Perfect Matchings in Matching-Covered Graphs

报告时间

2017.06.27    15:00-16:30

报告地点

数学院304报告厅

主讲人姓名

叶东

职   称

助理教授

工作单位

美国 中田纳西州立大学

叶东,中田纳西州立大学数学与计算科学系助理教授,于兰州大学获学士学位,于美国西弗吉尼亚大学数学系获博士学位,师从著名图论专家张存铨教授。主要研究方向为图论和组合,尤其在匹配、圈覆盖及图的代数性质方面做出突出工作。目前在图论及组合主流期刊发表30余篇论文,其中包括Combinatorica, Discrete & Computational Geometry, SIAM Journal on Discrete Mathematics等顶级期刊。

Let G be a matching-covered graph, i.e., every edge is contained in a perfect matching. An edge subset X of G is feasible if there exists two perfect matchings M1 and M2 such that |M1∩X|\not ≡ |M2∩X| mod 2. Lukot'ka and Rollová proved that an edge subset X of a regular bipartite graph is not feasible if and only if X is switching-equivalent to ∅, and they further ask whether a non-feasible set of a regular graph of class 1 is always switching-equivalent to either ∅ or E(G)? Two edges of G are equivalent to each other if a perfect matching M of G either contains both of them or contains none of them. An equivalent class of G is an edge subset K with at least two edges such that the edges of K are mutually equivalent. An equivalent class is not a feasible set. Lovász proved that an equivalent class of a brick has size 2. In this talk, we show that, for every integer k ≥ 3, there exist infinitely many k-regular graphs of class 1 with an arbitrarily large equivalent class K such that K is not switching-equivalent to either ∅ or E(G), which settles the problem proposed by Lukot'ka and Rollová. Further, we characterize bipartite graphs with equivalent class, and characterize matching-covered bipartite graphs of which every edge is removable. This is joint work with He, Wei and Zhai.

 

关闭窗口